Paginas

sexta-feira, 19 de novembro de 2010

Refração

Índice de refração

Índice de refração é uma relação entre a velocidade da luz no vácuo (c) e a velocidade da luz em um determinado meio. Em meios com índices de refração mais baixos (próximos a 1) a luz tem velocidade maior (ou seja, próximo a velocidade da luz no vácuo). A relação pode ser descrita pela fórmula:
Em que: c é a velocidade da luz no vácuo (c = 3 x 108 m/s); v é a velocidade da luz no meio;
De modo geral, a velocidade da luz nos meios materiais é menor que c; e assim, em geral, teremos n > 1. Por extensão, definimos o índice de refracção do vácuo, que obviamente é igual a 1. Portanto, sendo n o índice de refracção de um meio qualquer, temos:
A velocidade de propagação da luz no ar depende da frequência da luz, já que o ar é um meio material. Porém essa velocidade é quase igual a c = 3 x 108 m/s para todas as cores. Ex.: índice de refracção da luz violeta no ar = 1,0002957 e índice de refracção da luz vermelha no ar = 1,0002914. Portanto, nas aplicações, desde que não queiramos uma precisão muito grande, adoptaremos o índice de refracção do ar como aproximadamente igual a 1:
Como vimos, as cores, por ordem crescente de frequências, são: vermelho, laranja, amarelo, verde, azul, índigo (anil) e violeta.
A experiência mostra que, em cada meio material, a velocidade diminui com a frequência, isto é, quanto "maior" a frequência, "menor" a velocidade.
Portanto como , concluímos que o índice de refracção aumenta com a frequência. Quanto "maior" a frequência, "maior" o índice de refracção.
Note como o cano verde parece partir-se dentro dos copos
Em geral, quando a densidade de um meio aumenta, o seu índice de refracção também aumenta. Como variações de temperatura e pressão alteram a densidade, concluímos que essas alterações também alteram o índice de refracção. No caso dos sólidos, essa alteração é pequena, mas para os líquidos, as variações de temperatura são importantes, e no caso dos gases tanto as variações de temperatura como as de pressão devem ser consideradas.
A maioria dos índices de refracção é menor que 2; uma exceção é o diamante, cujo índice é aproximadamente 2,4. Para a luz amarela emitida pelo sódio, sua frequência é f = 5090.1014Hz e cujo comprimento de onda no vácuo é λ = 589nm. Essa é a luz padrão para apresentar os índices de refracção.
Consideremos dois meios "A" e "B", de índices de refracção nA e nB; se nA > nB, dizemos que "A" é mais refringente que "B".

Continuidade Óptica

Consideremos dois meios transparentes A e B e um feixe de luz dirigindo-se de A para B. Para que haja feixe refratado é necessário que .
Quando nA = nB, não há luz reflectida e também não há mudança na direção da luz ao mudar de meio; dizemos que há continuidade óptica.
Quando temos um bastão de vidro dentro de um recipiente contendo um líquido com o mesmo índice de refração do vidro, a parte do bastão que está submersa, não refletindo a luz, fica "invisível".

Índice de refracção relativo

Se o índice de refracção de um meio A é nA e o índice de um meio B é nB, definimos:
nAB = índice de refração do meio A em relação ao meio B =
nBA = índice de refração do meio B em relação ao meio A =
Sendo vA e vB as velocidades da luz nos meios A e B, temos:

Leis da refração

Consideremos dois meios transparentes A e B e um feixe estreito de luz monocromáctica, que se propaga inicialmente no meio A, dirigindo-se para o meio B. Suponhamos, ainda, que uma parte da luz consiga penetrar no meio B e que a luz tenha velocidades diferentes nos dois meios. Nesse caso, diremos que houve Refracção. O raio que apresenta o feixe incidente é o raio incidente (i), e o raio que apresenta o feixe refractado é o raio refractado (r).

A primeira lei da Refração

O raio incidente, o raio refratado e a normal, no ponto de incidência, estão contidos num mesmo plano.
A normal é uma reta perpendicular à superfície no ponto de incidência, θA é denominado ângulo de incidência e θB, ângulo de refração.

 A segunda lei da Refração

Os senos dos ângulos de incidência e refracção são diretamente proporcionais às velocidades da onda nos respectivos meios.
Ou seja:
I
Dessa igualdade tiramos:
II
A Segunda Lei da Refracção foi descoberta experimentalmente pelo holandês Willebrord van Royen Snell (1591-1626) e mais tarde deduzida por René Descartes, a partir de sua teoria corpuscular da luz. Nos Estados Unidos, ela é chamada de Lei de Snell e na França, de Lei de Descartes; em Portugal e no Brasil é costume chamá-la de Lei de Snell-Descartes.
Inicialmente a Segunda Lei foi apresentada na forma da equação II; no entanto, ela e mais fácil de ser aplicada na forma da equação I.
Observando a equação I, concluímos que, onde o ângulo for menor, o índice de refracção será maior. Explicando melhor: se , o mesmo ocorre com seus senos, ; logo, para manter a igualdade da equação I, . Ou seja, o menor ângulo θB ocorre no meio mais refringente, nB.
Pelo princípio da reversibilidade, se a luz faz determinado percurso, ela pode fazer o percurso inverso. Assim, se ela faz o percurso XPY, ela pode fazer o percurso YPX. Mas, tanto num caso como no outro, teremos:
Quando a incidência for normal, não haverá desvio e teremos , e, portanto, , de modo que a Segunda Lei também é válida nesse caso, na forma da equação I:

Caso de ângulos pequenos

Na tabela seguinte, apresentamos alguns ângulos "pequenos" expressos em graus e radianos, com o respectivo valor do seno e da tangente:
Ângulo em graus
Ângulo em radianos
Seno
Tangente
0
0
0
0
2
0,035
0,035
0,035
4
0,070
0,070
0,070
6
0,105
0,104
0,105
8
0,140
0,139
0,140
10
0,174
0,174
0,176

Observando esta tabela, percebemos que, para um ângulo θ, até aproximadamente 10° temos:
quando θ está expresso em radianos. Assim, para ângulos pequenos, a Segunda Lei da Refracção pode ser escrita:
para ângulos em radianos e em graus (devido ao fator de conversão entre radianos e graus ser o mesmo para todos os angulos - 180/pi).

Nenhum comentário:

Postar um comentário